Cold Storage Roof Design: 5 Key Components for an Airtight Roofing System

By Kristin M Westover PE 11-10-2023
Tag Icon

Cold storage facilities face unique challenges when it comes to maintaining optimal interior temperatures. One crucial aspect in ensuring efficient temperature control is creating an airtight roof system which can help prevent cooled interior air from escaping, warmer exterior air from entering, reduce thermal loss and condensation potential, all while promoting energy efficiency and prolonging the life of the roof system and building.

Understanding Cold Storage Roof Design

Cold storage roof design must consider temperature and thermodynamics, relative moisture risks, vapor control, and air control to create a high-performance roof system. Proper planning and understanding of these factors will reduce the risk of energy loss.

Cold storage buildings are unique because they experience extreme temperature differentials between their interior and exterior, resulting in significant vapor drive from the warmer exterior to the colder interior. This vapor drive can have detrimental effects on the roof assembly, including condensation within the assembly, leading to deterioration and potential failure if not properly addressed. Similarly, uncontrolled air movement between the warm exterior to the cold interior can lead to condensation within the roof assembly and at the underside of the roof deck. Condensation occurs when the warm, humid exterior meets the cold interior air and most often occurs at the roof to deck interface and at penetrations where there are discontinuities in the roof assembly.

Key Components in Creating an Air-Tight Roof System

To achieve a high performing airtight roof system, it is crucial to focus on the entire roof system including: selection of the membrane, insulation, coverboards, roof attachment methods, and detailing at penetrations, curbs, and roof decks to wall interfaces. While each of these components play a vital role in preventing air leakage, thermal loss, and condensation in cold storage facilities, it is the proper design and detailing of the entire assembly that makes a successful cold storage roof installation.

  1. Membrane Selection:

    When selecting a roof membrane, it's essential to consider factors such as seam strength, puncture resistance, and air and vapor retarding properties. Single-ply membranes with heat-welded seams provide better long-term performance than taped or glued seams, as they create a monolithic material and the seam becomes the strongest point of the membrane. In conjunction with a coverboard, on roofs where contractor access is required for servicing units, such as for glycol or ammonia lines on cold storage facilities, a thicker membrane that can withstand added foot traffic is preferred. Additionally, for cold storage buildings located in hail zones, a thicker membrane or a fleece-back membrane, coupled with a coverboard, will provide additional protection from the storm. Most roofing membranes function as both an air and vapor retarder; a properly installed and detailed roof membrane can help minimize condensation potential and improve the overall performance of the roof. The most effective place for a vapor retarder in a cold storage facility is at the exterior of the roofing assembly as vapor drive will be from the warm exterior to the cooler interior. A roof membrane acts at the vapor retarder and can also limit uncontrolled air from the exterior to the interior when detailed properly. Asphaltic systems, due to the multiple layers and the granule surface, limit air and vapor flow due to the nature of the multi-ply installation, and are generally more resistant to punctures than thinner single-ply systems.

  2. Insulation:

    Insulation is crucial for maintaining ideal temperature levels and promoting energy efficiency in cold storage buildings. Adhering to both the Energy Code and industry standards, such as insulation recommendations by ASHRAE, the appropriate amount of insulation should be used; the colder the interior temperature, the additional insulation that may be required. Often blast freezers have interior temperatures that can be as low as -50℉ and will have up to R60 of roof insulation. Ensuring proper insulation thickness, including a minimum of two layers of insulation and staggering and offsetting the insulation joints, will mitigate thermal loss between board joints.

  3. Coverboards:

    Coverboards provide added protection against foot traffic and other potential hazards, such as damage from weather related events, to the roof system. Coverboards provide protection to the insulation as well as stiffen the substrate beneath the membrane. The use of appropriate coverboards can significantly improve the durability and lifespan of the roof system including an ability to mitigate damage to the membrane from hail or flying debris. Additionally, by installing a coverboard, the roof system becomes more resilient to damage. This means less repairs or noise making activities to complete the repairs after a storm, and less downtime at the interior of the building if the damage is significant. The addition of a coverboard is considered a best practice in a roofing assembly, and the incorporation of the coverboard beneath the membrane will increase overall system robustness.

  4. Roof Attachment Methods:

    The attachment method plays a vital role in minimizing thermal bridging and improving overall energy efficiency, whether through mechanical fasteners or adhesive attachment options. It is recommended to install an adhered system, of either typical adhesives or asphaltic systems, which mechanically attaches the first layer of insulation and adheres subsequent layers. Burying the fasteners in the insulation layer closest to the roof deck decreases the effects of thermal bridging and thermal loss. Burying the fasteners also eliminates potential air paths created by fasteners throughout the roof system.

  5. Detailing at Penetrations, Curbs, and Steel Decks:

Detailing at penetrations and at exterior wall to roof deck interfaces is an essential aspect of ensuring an airtight roof system. Proper air sealing at these critical points, which includes the installation of closed cell spray foam, can help prevent uncontrolled air movement and ultimately condensation within the roof system. At steel roof decks, closed cell spray foam should be installed in deck flutes a minimum of 12-inches measured from the exterior walls, around penetrations, and at roof dividing walls. Closed cell spray foam should also be installed a minimum 1-inch between the joint and the rigid insulation at roof to exterior wall interfaces and penetrations.

    Designing and installing an airtight roof assembly is critical in cold storage facilities. Improper design or installation can leave voids in the system that allow for the warm exterior air to meet with the cooler interior air, causing condensation within the roofing system, which can lead to premature deterioration of roof components. Installing a robust roof assembly, including consideration to the membrane thickness, coverboard, insulation, and attachment method impacts the service life and resiliency of the membrane.

    Curious to learn more about cold storage buildings and the critical role roofing plays? Explore the GAF Cold Storage website, read A Guide to Cold Storage Roof System Design, connect with the GAF Building & Roofing Sciences team, or send an email to for additional information.

    Don't miss another GAF RoofViews post!
    Whether it's time for a new roof or a repair, you'll need a roofing contractor to help you make the right choices for your home. But if you haven't hired a roofer before, you may not know what to look for.
    Your roof protects you and your home from the outside elements. And while a quality roof may provide this protection for many years, unfortunately, no roof lasts forever. If your roof is in need of repair or replacement, it's time to gather a few roofing quotes to get started. Neglecting to fix your roof can lead to water damage and pest intrusion, among other challenges.
    In 2022, GAF launched a first-of-its-kind initiative in Pacoima, one of the hottest neighborhoods in Los Angeles, to explore community-wide solutions to combat urban heat. The GAF Cool Community Project is addressing the complex issue of extreme heat through a research-driven approach: Take a hot, sun-exposed community with an abundance of heat-retaining surfaces. Then, apply solar-reflective coatings to its streets and public hardscapes. With resources and support from GAF and non-profit partners, more than 700,000 square feet worth of streets, parking lots, and other hardscapes were coated with StreetBond DuraShield with Invisible ShadeTM technology over a contiguous 10-block area. The formerly dark streets were transformed to a cool gray-blue, and colorful coatings brighten the basketball courts and other public gathering spaces.
    Longtime fixtures of playgrounds and recreational areas, sports courts have a lot to offer. In addition to providing opportunities for children and adults to participate in physical activities, they can strengthen communities. There are also other benefits when courts are designed to reduce surface temperatures and protect substrate materials.
    What is going on here? No, this roof does not have measles, it has a problem with thermal bridging through the roof fasteners holding its components in place, and this problem is not one to be ignored.
    GAF is committed to building more resilient communities in the areas where we live and work. Working with our network of manufacturing communities, we can leverage our expertise, resources, and products to help protect the places we call home. Our local teams lend their time and talents to address the unique needs of each community, as we help support the fundamental needs of shelter, families and workforces.
    This blog contains information created by a variety of sources, including internal and third party writers. The opinions and views expressed do not necessarily represent those of GAF. The content is for informational purposes only. It is not intended to constitute financial, accounting, tax or legal advice. GAF does not guarantee the accuracy, reliability, and completeness of the information. In no event shall GAF be held responsible or liable for errors or omissions in the content or for the results, damages or losses caused by or in connection with the use of or reliance on the content.

    Interested in sharing or republishing our content? We kindly ask you to adhere to our guidelines.