Building Science

FEATURED
Keeping water out of a building is undoubtedly the primary function of a roof system. But one could argue that ensuring a building's roof stays in place during high-wind events is equally important. Let's face it, without a roof, it's hard to keep water out! This blog takes a look at one of the subsets of wind design of roof systems: Wall Zones 4 and 5 and their relationship with roof perimeters.
LATEST NEWS
Several changes have been included in the 2022 version of ASCE 7 as they relate to roof. You may be thinking, 'as soon as I mastered ASCE 7-16, an updated version is set to be released!'. As with any Standard, it can be expected that updates will be made to include current research or trends. While the inclusion of tornado loads and the resulting changes in the load combinations may be the most significant, there are other updates that affect roofing as well. From minor updates to basic wind speed maps, to stepped roofs, and pavers, we have compiled a summary to help you navigate the updates. Not to fret, the changes are likely to not be incorporated until the 2024 version of IBC. However, that does not preclude incorporating these changes on current and upcoming projects.
Growing up in the northeast, tornadoes were these random events that occurred in the movies, and far off places like Kansas. But according to the National Institute of Standards and Technology (NIST), roughly 1,200 tornadoes occur in the US each year! AND they occur in all 50 states, but primarily in the lower 48 and east of the Rocky Mountains. Given that tornadoes kill more people per year in the U.S. than hurricanes and earthquakes combined, ASCE's Structural Engineering Institute revised the ASCE 7 Standard for Minimum Design Loads and Associated Criteria for Buildings and Other Structures in hopes that it will be adopted into the 2024 International Building Code.
Since its inception a roof's primary purpose has been to shelter its inhabitants from the elements, but now the underutilized potential of roof surfaces is being realized. For roofs with large surface areas, the potential for large overburden installations, such as solar, vegetative roofing, or amenity decks can be exceptional. Even smaller roofs can have overburden that make a significant impact on the sustainability goals of a building including: increased energy efficiency, stormwater retention, energy generation, biohabitat restoration, food production, reduced urban heat island effect, and outdoor space.
Don't Miss
Another Post
Several changes have been included in the 2022 version of ASCE 7 as they relate to roof. You may be thinking, 'as soon as I mastered ASCE 7-16, an updated version is set to be released!'. As with any Standard, it can be expected that updates will be made to include current research or trends. While the inclusion of tornado loads and the resulting changes in the load combinations may be the most significant, there are other updates that affect roofing as well. From minor updates to basic wind speed maps, to stepped roofs, and pavers, we have compiled a summary to help you navigate the updates. Not to fret, the changes are likely to not be incorporated until the 2024 version of IBC. However, that does not preclude incorporating these changes on current and upcoming projects.
A common question being asked in the roofing industry is whether or not the 2016 version of ASCE 7 is going to increase the design wind pressures acting on a building. The answer is "yes" in many cases. So, the follow up question is "by how much?" And, that leads to the next question, "how much more capacity will roof systems be required to have when wind design follows ASCE 7-16?"
What are the key material properties?In a previous article the use of thermal inertia to slow down heat flux through a roof assembly was discussed. In buildings where air conditioning costs dominate and heating use is relatively low, higher thermal inertia assemblies can potentially improve energy efficiency. This is particularly the case of buildings such as offices that are only occupied during daylight hours. Thermal inertia could delay the transmission of heat into a building towards the end of the day, increasing thermal comfort and allowing facility managers to reduce cooling during the day.
Showing page of
VIDEOS FROM GAF
VIDEO ARTICLE
Air Barrier vs. Vapor RetarderWelcome to Episode 4 of The Building Science FAQ series.The Building Science FAQ video series explores some of the technical questions that crop up when specifying a low-slope roof.
VIDEO ARTICLE
Air Barrier vs. Vapor RetarderWelcome to Episode 4 of The Building Science FAQ series.The Building Science FAQ video series explores some of the technical questions that crop up when specifying a low-slope roof.
VIDEO ARTICLE
Air Barrier vs. Vapor RetarderWelcome to Episode 4 of The Building Science FAQ series.The Building Science FAQ video series explores some of the technical questions that crop up when specifying a low-slope roof.
This blog contains information created by a variety of sources, including internal and third party writers. The opinions and views expressed do not necessarily represent those of GAF. The content is for informational purposes only. It is not intended to constitute financial, accounting, tax or legal advice. GAF does not guarantee the accuracy, reliability, and completeness of the information. In no event shall GAF be held responsible or liable for errors or omissions in the content or for the results, damages or losses caused by or in connection with the use of or reliance on the content.

Interested in sharing or republishing our content? We kindly ask you to adhere to our guidelines.